Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(2): 770-780, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181202

RESUMO

The R3m molecular descriptor (R-GETAWAY third-order autocorrelation index weighted by the atomic mass) has previously been shown to encode molecular attributes that appear to be physically and chemically relevant to grouping diverse active pharmaceutical ingredients (API) according to their potential to form persistent amorphous solid dispersions (ASDs) with polyvinylpyrrolidone-vinyl acetate copolymer (PVPVA). The initial R3m dispersibility model was built by using a single three-dimensional (3D) conformation for each drug molecule. Since molecules in the amorphous state will adopt a distribution of conformations, molecular dynamics simulations were performed to sample conformations that are probable in the amorphous form, which resulted in a distribution of R3m values for each API. Although different conformations displayed R3m values that differed by as much as 0.4, the median of each R3m distribution and the value predicted from the single 3D conformation were very similar for most structures studied. The variability in R3m resulting from the distribution of conformations was incorporated into a logistic regression model for the prediction of ASD formation in PVPVA, which resulted in a refinement of the classification boundary relative to the model that only incorporated a single conformation of each API.


Assuntos
Polímeros , Povidona , Polímeros/química , Povidona/química , Compostos de Vinila/química , Liberação Controlada de Fármacos , Solubilidade , Composição de Medicamentos/métodos
2.
Pharm Res ; 40(12): 2769-2778, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667146

RESUMO

PURPOSE: The pharmaceutical literature contains examples wherein desupersaturation from high concentrations does not proceed to equilibrium concentration of the thermodynamically most stable form but remains above equilibrium. The purpose of the current research was to investigate the effect of structurally related compounds on desupersaturation kinetics as a possible explanation for a higher than equilibrium solubility after crystal growth of γ-indomethacin (γ-IMC). METHODS: Three structurally related compounds (SRC) - cis-sulindac (c-SUL), trans-sulindac (t-SUL) and indomethacin-related compound-A (IMC-A) -were investigated. Desupersaturation kinetics to the most stable γ-IMC, in the presence of c-SUL, t-SUL or IMC-A, was measured at pH 2.0. RESULTS: The SRCs c-SUL and t-SUL were effective crystallization inhibitors of IMC, while IMC-A was not a potent crystallization inhibitor of IMC. Among the sulindac isomers, t-SUL was a stronger crystallization inhibitor. The apparent solubility of γ-IMC crystals grown from supersaturated solutions in the presence of SRCs matched the equilibrium solubility of γ-IMC. During crystallization of IMC in the presence of IMC-A, the concentration of IMC-A declined initially but rebounded as supersaturation and crystallization rate of IMC declined, suggesting that IMC-A itself became incorporated in the IMC crystal lattice at higher degrees of IMC supersaturation. CONCLUSIONS: The results suggest that high apparent solubility after crystallization of IMC reported by several authors is not related to the presence of IMC-A impurity. The greater IMC crystal growth rate inhibition by t-SUL than by c-SUL was consistent with the proposed orientation of SUL molecules adsorbed on the IMC crystal, providing a mechanistic understanding of the inhibition.


Assuntos
Indometacina , Sulindaco , Indometacina/química , Cristalização/métodos , Cinética , Solubilidade
3.
Pharm Res ; 40(12): 2887-2902, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37523015

RESUMO

PURPOSE: To compare the prediction accuracy of two models used to characterize the complete disordering potential of materials after extensive cryogenic milling. METHODS: Elastic shear moduli (µs) were simulated in silico. Comparison with available literature values confirmed that computations were reasonable. Complete disordering potential was predicted using the critical dislocation density (ρcrit) and bivariate empirical models. To compare the prediction accuracy of the models, each material added for dataset expansion was cryomilled for up to 5 hr. Mechanical disordering after comminution was characterized using PXRD and DSC, and pooled with previously published results. RESULTS: Simulated µs enabled predictions using the ρcrit model for 29 materials. This model mischaracterized the complete disordering behavior for 13/29 materials, giving an overall prediction accuracy of 55%. The originally published bivariate empirical model classification boundary correctly grouped the disordering potential for 31/32 materials from the expanded dataset. Recalibration of this model retained a 94% prediction accuracy, with only 2 misclassifications. CONCLUSIONS: Prediction accuracy of the ρcrit model decreased with dataset expansion, relative to previously published results. Overall, the ρcrit model was considerably less accurate relative to the bivariate empirical model, which retained very high prediction accuracy for the expanded dataset. Although the empirical model does not imply a mechanism, model robustness suggests the importance of glass transition temperature (Tg) and molar volume (Mv) on formation and persistence of amorphous materials following extensive cryomilling.


Assuntos
Vitrificação , Difração de Raios X , Temperatura de Transição
4.
Pharm Res ; 40(12): 2963-2981, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37389801

RESUMO

Amorphous solid dispersions (ASDs) are a formulation and development strategy that can be used to increase the apparent aqueous solubility of poorly water-soluble drugs. Their implementation, however, can be hindered by destabilization of the amorphous form, as the drug recrystallizes from its metastable state. Factors such as the drug-polymer solubility, miscibility, mobility, and nucleation/crystal growth rates are all known to impact the physical stability of an ASD. Non-covalent interactions (NCI) between the drug and polymer have also been widely reported to influence product shelf-life. In this review, the relationship between thermodynamic/kinetic factors and adhesive NCI is assessed. Various types of NCIs reported to stabilize ASDs are described, and their role in affecting physical stability is examined. Finally, NCIs that have not yet been widely explored in ASD formulations, but may potentially impact their physical stability are also briefly described. This review aims to stimulate further theoretical and practical exploration of various NCIs and their applications in ASD formulations in the future.


Assuntos
Polímeros , Polímeros/química , Cristalização , Solubilidade , Termodinâmica , Estabilidade de Medicamentos , Composição de Medicamentos
5.
J Pharm Sci ; 112(1): 318-327, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351478

RESUMO

Evaluation of different amorphous solid dispersion carrier matrices is enabled by active pharmaceutical ingredient (API) structure-based predictions. This study compares the utility of Hansen Solubility Parameters with the R3m molecular descriptor for identifying dispersion polymers based on the structure of the drug molecule. Twelve API-polymer combinations (4 APIs and 3 interrelated polymers) were used to test each approach. Co-solidified mixtures containing 75% API were prepared by melt-quenching. Phase behavior was evaluated and classified using differential scanning calorimetry, powder X-ray diffraction, polarized light microscopy, and hot stage microscopy. Observations of dispersion behavior were compared to predictions made using the Hansen Solubility Parameter and R3m. The solubility parameter approach misclassified the dispersion behavior of 1 API-polymer combination and also did not produce definite predictions in 3 out of 12 of the API-polymer combinations. In contrast, R3m classifications of dispersion behavior were correct in all but two cases, with one misclassification and one ambiguous prediction. The solubility parameters best classify dispersion behavior when specific drug-polymer intermolecular interactions are present, but may be less useful otherwise. Ultimately, these two methods are most effectively used together, as they are based on distinct features of the same molecular structure.


Assuntos
Polímeros , Povidona , Varredura Diferencial de Calorimetria , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Polímeros/química , Povidona/química , Solubilidade
6.
Mol Pharm ; 19(11): 3959-3972, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36049226

RESUMO

Specific noncovalent drug-polymer interactions were analytically identified using Raman and Fourier transform infrared spectroscopy for amorphous solid dispersions (ASD) formed between either chlorpropamide or tolbutamide and polyvinylpyrrolidone vinyl acetate random copolymer (PVPVA). Spectral changes in the C-Cl stretching vibrations due to changes in the electronic environment of the Cl atom confirmed halogen bond formation in chlorpropamide-PVPVA ASDs, the extent of which was established to be inversely related to the concentration of the drug using 2D correlation spectroscopy analysis. Hydrogen bonding between the secondary amide of each drug and the pyrrolidone carbonyl of the copolymer was also confirmed in all dispersions. Implications of coexistent interactions were investigated for drug-polymer solubility, mixing free energy, and molecular mobility relative to tolbutamide, which only formed hydrogen bonds with PVPVA. Chlorpropamide had a higher solubility, a larger negative mixing free energy, and lower mobility in PVPVA relative to tolbutamide. These thermodynamic and kinetic differences demonstrate the significance of halogen bond formation even when hydrogen bonding is present.


Assuntos
Halogênios , Tolbutamida , Solubilidade , Ligação de Hidrogênio , Clorpropamida , Polímeros/química , Composição de Medicamentos/métodos
7.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 5): 485-489, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35547791

RESUMO

The title compound, C10H13BrN2O3S, 1, contains a sulfonyl urea moiety, which possesses potential therapeutic functions (e.g., anti-diabetic and herbicidal). The geometry of 1 is similar to its closely related analogues, chlorpropamide and tolbutamide. This compound crystallizes in the monoclinic space group C2/c, having one mol-ecule in its asymmetric unit. The crystal structure of 1, recorded at 296 K, shows inter-molecular N-H⋯O and C-H⋯O-type infinite hydrogen-bonded chains involving the sulfonyl urea moiety. Hirshfeld surface analysis and the two-dimensional fingerprint plots confirmed hydrogen bonding as the dominant feature in the crystal packing.

8.
Mol Pharm ; 19(1): 303-317, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34932358

RESUMO

A molecular descriptor known as R3m (the R-GETAWAY third-order autocorrelation index weighted by the atomic mass) was previously identified as capable of grouping members of an 18-compound library of organic molecules that successfully formed amorphous solid dispersions (ASDs) when co-solidified with the co-polymer polyvinylpyrrolidone vinyl acetate (PVPva) at two concentrations using two preparation methods. To clarify the physical meaning of this descriptor, the R3m calculation is examined in the context of the physicochemical mechanisms of dispersion formation. The R3m equation explicitly captures information about molecular topology, atomic leverage, and molecular geometry, features which might be expected to affect the formation of stabilizing non-covalent interactions with a carrier polymer, as well as the molecular mobility of the active pharmaceutical ingredient (API) molecule. Molecules with larger R3m values tend to have more atoms, especially the heavier ones that form stronger non-covalent interactions, generally, more irregular shapes, and more complicated topology. Accordingly, these molecules are more likely to remain dispersed within PVPva. Furthermore, multiple linear regression modeling of R3m and more interpretable descriptors supported these conclusions. Finally, the utility of the R3m descriptor for predicting the formation of ASDs in PVPva was tested by analyzing the commercially available products that contain amorphous APIs dispersed in the same polymer. All of these analyses support the conclusion that the information about the API geometry, size, shape, and topological connectivity captured by R3m relates to the ability of a molecule to interact with and remain dispersed within an amorphous PVPva matrix.


Assuntos
Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Povidona/química , Compostos de Vinila/química , Modelos Químicos , Estrutura Molecular
9.
AAPS PharmSciTech ; 21(3): 96, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103355

RESUMO

The true density of an amorphous solid is an important parameter for studying and modeling materials behavior. Experimental measurements of density using helium pycnometry are standard but may be prevented if the material is prone to rapid recrystallization, or preparation of gram quantities of reproducible pure component amorphous materials proves impossible. The density of an amorphous solid can be approximated by assuming it to be 95% of its respective crystallographic density; however, this can be inaccurate or impossible if the crystal structure is unknown. Molecular dynamic simulations were used to predict the density of 20 amorphous solid materials. The calculated density values for 10 amorphous solids were compared with densities that were experimentally determined using helium pycnometry. In these cases, the amorphous densities calculated using molecular dynamics had an average percent error of - 0.7% relative to the measured values, with a maximum error of - 3.48%. In contrast, comparisons of amorphous density approximated from crystallographic structures with pycnometrically measured values resulted in an average percent error of + 3.7%, with a maximum error of + 9.42%. These data suggest that the density of an amorphous solid can be accurately predicted using molecular dynamic simulations and allowed reliable calculation of density for the remaining 10 materials for which pycnometry could not be done.


Assuntos
Cristalografia/métodos , Compostos Heterocíclicos/química , Simulação de Dinâmica Molecular , Cristalografia/tendências , Previsões , Compostos Heterocíclicos/análise , Simulação de Dinâmica Molecular/tendências
10.
Eur J Pharm Biopharm ; 131: 109-119, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30086393

RESUMO

Although salt formation is the most ubiquitous and effective method of increasing the solubility and dissolution rates of acidic and basic drugs, it consumes large quantities of organic solvents and is a batch process. Herein, we show that the dissolution rate of indomethacin (a poorly water-soluble drug) can be increased by using hot melt extrusion of a 1:1 (mol/mol) indomethacin:tromethamine mixture to form a highly crystalline salt, the physicochemical properties of which are investigated in detail. Specifically, pH-solubility studies demonstrated that this salt exhibited a maximal solubility of 19.34 mg/mL (>1000 times that of pure indomethacin) at pH 8.19. A solvent evaporation technique was also used for salt formation. Spectroscopic analyses (infrared, nuclear magnetic resonance) of both; demonstrated, in situ salt formation with proton transfer. Powder X-ray diffraction and differential scanning calorimetry confirmed the crystalline nature of salts formed by both methods. Even though a number of amorphous salts of acidic drugs have been reported, the formation of a crystalline salt of an acidic drug by hot melt extrusion is completely unprecedented, which makes this study an important benchmark for the pharmaceutical production industry.


Assuntos
Anti-Inflamatórios não Esteroides/química , Indometacina/química , Trometamina/química , Química Farmacêutica , Cristalização , Composição de Medicamentos , Excipientes , Temperatura Alta , Concentração de Íons de Hidrogênio , Solubilidade , Solventes
11.
AAPS PharmSciTech ; 19(1): 36-47, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28900868

RESUMO

Organoleptic agents constitute an important niche in the field of pharmaceutical excipients. These agents encompass a range of additives responsible for coloring, flavoring, sweetening, and texturing formulations. All these agents have come to play a significant role in pharmaceuticals and cosmetics due to their ability to increase patient compliance by elevating a formulation's elegance and esthetics. However, it is essential to review their physical and chemical attributes before use, as organoleptic agents, similar to active pharmaceutical ingredients (APIs), are susceptible to physical and chemical instability leading to degradation. These instabilities can be triggered by API-organoleptic agent interaction, exposure to light, air and oxygen, and changes in pH and temperature. These organoleptic agent instabilities are of serious concern as they affect API and formulation stability, leading to API degradation or the potential for manifestation of toxicity. Hence, it is extremely critical to evaluate and review the physicochemical properties of organoleptic agents before their use in pharmaceuticals and cosmetics. This literature review discusses commonly used organoleptic agents in pharmaceutical and cosmeceutical formulations, their associated instabilities, and probable approaches to overcoming them.


Assuntos
Cosméticos , Excipientes/química , Corantes/química , Estabilidade de Medicamentos , Aromatizantes/química , Edulcorantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...